Stems, Leaves, and Data
It’s been a while since we’ve written about statistics, so I want to start a short series about that. Here, we’ll look into stem-and-leaf plots (also called stemplots).
It’s been a while since we’ve written about statistics, so I want to start a short series about that. Here, we’ll look into stem-and-leaf plots (also called stemplots).
(An archive question of the week) A recent question asked about a well-known problem about stacking books (or cards, or dominoes) so that the top one extends beyond the base, giving a link to one of many explanations of it – but one, like many, that doesn’t quite fill in all the details. Doctor Rick …
I’ll close this series on averages with a quick look at the mode. Unlike the other “averages”, this doesn’t always exist, and when it is, it is not always unique. In fact, as we’ll see, sometimes we can’t be sure whether there is no mode, or many modes. How do we handle these odd cases?
In our series on averages, last week we introduced the idea of the weighted average (or weighted mean), where each item has a weight attached. The classic examples all involve grade averages in various ways. This time, we’ll look at how weighted averages arise when you need to average several averages together, something we touched …
In our series on averages, we’ve looked at mean/median/mode, then at details of the (arithmetic) mean, and then at different kinds of mean (arithmetic, geometric, harmonic, quadratic). Next, I want to look at the weighted mean concept. In checking what we’ve said about this, I found a useful series of explanations of one application of …
Last week, we looked at exactly what the mean is, referring specifically to the arithmetic mean, the one we first learn as the “average”. But just as we previously saw that there are several things called “average” (mean, median, mode), there are in fact several different kinds of “mean”. We’ll look here at the arithmetic, …
Last week, we started a series on averages, looking at a common list of three kinds of average: the mean, median, and mode. This time, we’ll focus in on the (arithmetic) mean, thinking about why it is appropriate for many applications; that will lead into next week’s discussion of when other kinds of mean are …
There are three different statistics that are commonly taught as “averages”, or “measures of central tendency”, of a set of numbers: mean, median, and mode. (There are others as well, which we will get to later.) What are they? How do they differ? How do you use them? We’ll look into questions like these as …