Alternatives

Sines Without Right Triangles

(A new question of the week) A recent question dealt with an apparent conflict between the right-triangle definition of sines and cosines, and the unit-circle definition, pertaining to multiples of 90° (angles on the axes). This provides an opportunity to look closely at the relationship between those two definitions. Two definitions Recall that the right-triangle …

Sines Without Right Triangles Read More »

Multiplying Fractions by Whole or Mixed Numbers

Last week we looked at how to multiply fractions, and why we do it that way. But what do we do when one of the numbers is a whole number, or when one or both are mixed numbers? And do we have to do it the way we are taught?

Angles in a Star

(A new question of the week) I like problems that can be solved in multiple ways, which can train us in seeing the world from different perspectives. Late in November we dealt with a pair of such questions involving angles in star-like figures.

A Geometrical Limit

(A new question of the week) We usually see limits applied to functions in a calculus class. An interesting question from late October deals with a limit in a geometrical construction based on a function. We’ll be seeing how to discover a proof, then several alternative proofs, and finally what the answer means.

Multiplying Fractions and Decimals

(A new question of the week) Let’s look at a quick question from mid-September, that had a number of different answers. In some ways, this is an easy question; but we’ll take it a little further, so keep reading to the end.

The Symmetric Derivative

To close out this series on the definition of the derivative, I want to look at a few questions about alternative versions of the definition, primarily the “symmetric difference quotient”. We’ll see that this leads to a slightly different result, not always equivalent to the original, and we’ll observe some associated ways that calculators can …

The Symmetric Derivative Read More »