Geometry

Volume and Surface Area of a Sphere – Without Calculus

We often get questions about deriving formulas for area and volume; usually when the question is about a sphere, the context is calculus, so we talk about integration, the usual modern method. But for students who only know geometry, “wait until you learn calculus” can be unsatisfying. Fortunately, there are a couple ways to do …

Volume and Surface Area of a Sphere – Without Calculus Read More »

Choosing the Most Appropriate Unit

We’ve been looking at measuring and drawing devices (compass, ruler, protractor); let’s move on to units of measurement. A fairly common question for students learning about measurement is, “What is the most appropriate unit for measuring ___?” The answer is not always clear, as we’ll see.

Using a Protractor

Last time we looked at how to use a ruler to measure distances. This time, we’ll consider another common question over the years: how to use a protractor to measure angles. We’ll also consider the relationship between protractors and the compass and straightedge constructions that started this series on geometry tools. And just like last …

Using a Protractor Read More »

Using a Ruler

Having just discussed why we use compass and straightedge in geometry, let’s flip that around and look at a common question at the more elementary level: How do you use a ruler to measure or draw a line of a given length? The usual issue here is working with the fractional markings on an inch …

Using a Ruler Read More »

Compass and Straightedge: Why?

Some time ago I looked at questions about trisecting an angle by compass and straightedge, which entailed discussing the rules for such constructions. We left open another common question: Why are such constructions important, and why do we use those particular tools? This probably isn’t explained as often as it should be. Why does it …

Compass and Straightedge: Why? Read More »

A Triangle in a Semicircle

(A new question of the week) Like many questions we get, this one can be solved in many ways. We like to guide a student to whatever solution will fit what they have learned; along the way, we may find various additional methods, and side trips into other topics of interest.

False Proofs: Geometry

We have been looking at some classic “false proofs” or “fallacies”, where a seemingly valid proof shows something clearly false to be true. The goal is to learn from these, how to distinguish a valid proof from an error. In a post from last year, What Role Should a Figure Play in a Proof?, I …

False Proofs: Geometry Read More »