Geometry

Overlapping Square Tiles

(A new question of the week) An interesting geometry question came to us in July, about the area of overlap between two squares. The discussion was not long, but leads to some interesting ideas.

Vector Basics: Adding Arrows

Because we have had a number of questions about vectors recently, I thought it might be time to look at various facets of that topic. Here, we will start with some ideas about what vectors, and their most basic operations, are. Next week, we’ll get into the far more interesting topic of multiplying vectors.

How Much Does the Earth Curve?

We’ve looked at how to find the circumference of the earth, and how far we can see over the horizon. Another kind of question we’ve had about the curvature of the earth is, how much does it curve over a given distance? That has been asked in several different ways, which lead to some intriguing …

How Much Does the Earth Curve? Read More »

How Far Can I See?

We have been looking at questions about the roundness of the earth, starting with the general fact, and then the determination of the size of the earth. A very common question is about how that roundness affects what we can see, sometimes as a challenge (“If I can see this, then how can the earth …

How Far Can I See? Read More »

Eratosthenes Measures the Earth

Last time we looked at a couple questions about proving the earth is round, which led into questions about how Eratosthenes measured the earth (though that in itself did not prove the earth is not flat). Let’s look at two questions about that project itself.

Proving the Earth is Round … or Not

Can you use mathematics to prove that the earth is round? That’s a question we get from time to time, sometimes from people who want to prove the earth is flat, sometimes from people who want to convince their friends otherwise, and sometimes just from students. Let’s think about it.

Area of Pyramids and Cones

We’ve looked at the volume of a pyramid, the formula for which can be found geometrically by a couple very different methods. Cones can be handled the same way, so we can skim over them. Let’s finish up by considering the surface areas of both cones and pyramids.