Calculus

Frequently Questioned Answers: 0.999… = 1

Having looked at two common questions in probability that are often challenged, let’s turn to the realm of numbers. Non-terminating decimals are inherently problematic, and one particular example causes difficulty for many, even after they fully accept the mathematics of it. Our FAQ page on this topic, at 0.9999… = 1, is very brief, and …

Frequently Questioned Answers: 0.999… = 1 Read More »

L’Hôpital’s Rule: One More Example

(A new question of the week) Having just looked at L’Hôpital’s Rule, we can conclude with a look at a recent question about it, to illustrate the reality of struggling to apply it (and the process we go through to help a student find an error).

L’Hôpital’s Rule: What and Why

The next few posts will look at a powerful technique for finding limits in calculus, called L’Hôpital’s Rule. Here, we’ll introduce what it is, and why it works. In the next post we’ll examine some harder cases.

Division by Zero and the Derivative

(An archive question of the week) The indeterminate nature of 0/0, which we looked at last time, is an essential part of the derivative (in calculus): every derivative that exists is a limit of that form! So it is a good idea to think about how these ideas relate.

Zero Divided By Zero: Undefined and Indeterminate

Back in January, I discussed the issue of division by zero. There is a special case of that that causes even more trouble, in every field from arithmetic to calculus: zero divided by zero. I’ll look at several typical questions that we answered at different levels.

What’s the Point of Limits?

(An archive question of the week) Many calculus courses start out with a chapter on limits; or they may be introduced in a “precalculus” course. But too often the concept is not sufficiently motivated. What good are limits? Why did they have to be invented? Are they as simple as they seem? Why is an epsilon-delta …

What’s the Point of Limits? Read More »