Calculus

Limit of sin(x)/x

Last week we looked at some recent questions about limits, where we focused first on what limits are, in terms of graphs or tables, and then on finding them by algebraic simplification. This week, we’ll look at two old questions about a trigonometric limit that can’t be determined that way: sin(x)/x, as x approaches zero.

Two Tricky Questions on Tangent Lines

(A new question of the week) Sometimes we have lots of quick questions and a number of long discussions, neither of which seems suitable for a post. This time I’ve chosen to combine two distantly related questions, one recent and one from several months ago, both involving tangent lines to functions.

Equivalent Definitions of e

(A new question of the week) It is not unusual for mathematicians to define a concept in multiple ways, which can be proved to be equivalent. One definition may lead to a theorem, which another presentation uses as the definition, from which the original definition can be proved as a theorem. Here, in yet another …

Equivalent Definitions of e Read More »

Separable Differential Equations

(A new question of the week) We received a couple different questions recently about solving differential equations by separation of variables, and why the method is valid. We’ll start with a direct question about it, and then look at an attempt at an alternate perspective using differentials.

Two Integration Puzzlers

Two recent questions (that came to us within two hours) dealt with apparent contradictions in integration. The first seems to give a result of zero that is clearly wrong; the second seems to give two different results for the same integral.

Average Rate of Change of a Function

(A new question of the week) Average rate of change is a topic taught in pre-calculus and calculus courses, primarily as preparation for the derivative, though it has more immediate applications. A recent question asked about when the concept is valid, which I found interesting.

Implicit Differentiation: Explanation, Examples, and a Surprise

In response to a recent request for information about implicit differentiation (hi, Brian!), let’s take a look at that topic. It happens to be distantly related to Friday’s topic, which was about implicitly defined curves. We’ll start with a thorough explanation, and then look at several specific examples, capping it off with a weird one.