Loading [MathJax]/extensions/tex2jax.js

Calculus

Where Do Logarithms Come From?

Having answered many questions recently about logarithms, I realized we haven’t yet covered the basics of that topic. Here we’ll introduce the concept by way of its history, and subsequently we’ll explore how they work.

Implicit Differentiation: What to Do When It’s “Wrong”

(A new question of the week) Having just discussed the Chain Rule and the Product and Quotient Rules, a recent question about implicit differentiation (which we covered in depth two years ago) fits in nicely. This raises an important issue: when you get an apparently wrong answer, you may just have done something wise that …

Implicit Differentiation: What to Do When It’s “Wrong” Read More »

How to Think About the Product and Quotient Rules

Last time, we considered the Chain Rule for derivatives. This time, we’ll look at the product and quotient rules, focusing on how to keep the formulas straight, and make them easier to apply. We’ll look primarily at the quotient rule to start with, and then examine the product rule at the end.

How to Think About the Chain Rule

Having recently helped some students (in person) with the rules of differentiation, I’m reminded to do so here, starting with the chain rule. It is easy to make this topic look harder than it really is; the two main ways to state the rule are often confusing, and different approaches fit different problems. We’ll try …

How to Think About the Chain Rule Read More »

More On Mixing Trig Functions

I’ve had several occasions in face-to-face tutoring lately to refer to a past post on mixing (that is, composition) of trig and inverse trig functions. Several recent questions have touched directly or indirectly on this same general idea and extended it, so I thought I’d post them.

Monotonic Functions, Inequalities, and Optimization

Looking for a cluster of questions on similar topics, I found several from this year in which monotonic functions (functions that either always increase, or always decrease) provide shortcuts for various types of problems (optimization with or without calculus, and also algebraic inequalities). We’ll look at a few of these.