Figuring Out Integration by Parts
Having looked at some issues in integration, let’s look at some old questions about integration by parts.
Having looked at some issues in integration, let’s look at some old questions about integration by parts.
A couple recent questions offered tricks for integrating rational functions, opportunistically modifying or working around the usual method of partial fractions. We have previously discussed this method in Partial Fractions: How and Why, and in Integration: Partial Fractions and Substitution, where we looked at other variations.
(A new question of the week) Definite integrals can sometimes be solved by finding an antiderivative; but when that is either difficult or impossible, there may be special tricks available. Here we’ll lead a student gradually to a solution using symmetry; and then we’ll look at an earlier problem that used essentially the same trick …
Having answered many questions recently about logarithms, I realized we haven’t yet covered the basics of that topic. Here we’ll introduce the concept by way of its history, and subsequently we’ll explore how they work.
Last time we looked at how to find the volume of a frustum of a pyramid or cone. But sometimes what looks at first like a rectangular frustum actually isn’t. This case turns out to have a more general formula almost as nice as what we have for an actual frustum. We’ll discover that the …
When we recently looked at the Chain Rule, I considered including two questions about its proof, but decided they would be too much. However, when a recent question asked about a different version of the same proof, I decided to post all three. It is a nice illustration of how a mathematician’s view of a …
(A new question of the week) Having just discussed the Chain Rule and the Product and Quotient Rules, a recent question about implicit differentiation (which we covered in depth two years ago) fits in nicely. This raises an important issue: when you get an apparently wrong answer, you may just have done something wise that …
Implicit Differentiation: What to Do When It’s “Wrong” Read More »
Last time, we considered the Chain Rule for derivatives. This time, we’ll look at the product and quotient rules, focusing on how to keep the formulas straight, and make them easier to apply. We’ll look primarily at the quotient rule to start with, and then examine the product rule at the end.
Having recently helped some students (in person) with the rules of differentiation, I’m reminded to do so here, starting with the chain rule. It is easy to make this topic look harder than it really is; the two main ways to state the rule are often confusing, and different approaches fit different problems. We’ll try …
I’ve had several occasions in face-to-face tutoring lately to refer to a past post on mixing (that is, composition) of trig and inverse trig functions. Several recent questions have touched directly or indirectly on this same general idea and extended it, so I thought I’d post them.