Algebra

An Age Proportion Problem: Multiple Methods

(A new question of the week) Some problems can be done either by algebra or by basic arithmetic methods and some creativity; and although algebra generally makes work easier by making it routine, sometimes special-purpose thinking (once you have thought it!) can be quicker. Here we have a problem where a creative method didn’t quite …

An Age Proportion Problem: Multiple Methods Read More »

Is That Really a Polynomial?

(A new question of the week) We often see polynomials in a simplistic way, imagining that any function whose graph resembles a polynomial is a polynomial. Much as an attempt to mimic random data often lacks essential properties of genuine randomness, so what we intend to be a polynomial often is not. As we observe …

Is That Really a Polynomial? Read More »

Euler’s Formula: Complex Numbers as Exponents

Last week we explored how the polar form of complex numbers gives multiplication a simple geometric meaning. Here we’ll go one more step, and express polar form exponentially, which makes DeMoivre’s theorem trivial, and gives us a simple notation to replace “cis”.

Arithmetic with Complex Numbers

We’ve seen what complex numbers are; now we can look at what we can do with them. The basic operations are not hard, but have a few interesting features related to graphs. So that’s where we’ll start

How Imaginary Numbers Became “Real”

Last week we started a series on complex numbers, looking at how we introduce the concept. This time I want to look more at the actual history of the idea, leading to how mathematicians were able to define complex numbers without saying “Just suppose …”.

Making Sense of Imaginary Numbers

Several recent questions (including last week’s post) involved complex numbers, and made me realize we haven’t yet talked about them here. So let’s start a series on the topic, beginning with how we talk about them to students who are just meeting the idea for the first time, or are troubled by it.

Abraham Lincoln and the Rule of Three

For the last two weeks, we have examined new and old ways to think about proportions. This time, we’ll look at an old method called the Rule of Three (both “single” and “double”), and how you might have learned to solve these problems 200 years ago without algebra. Be prepared for a deep dive!