Algebra

What If: Inventing “Pseudo-Complex” Numbers

We’ll work through a textbook exercise that encourages students to discover what it’s like to invent a new number system, as well as why some ideas work but others do not. The topic: What would happen if we changed the definition of the imaginary unit i so that its square is 1 rather than -1?

A System of Exponential Equations

What do you do when you are given a problem that starts with a “lie” and ends with a wrong answer? We’ll go in several directions with this problem, a system of two exponential equations in two variables.

Fun With a Functional Equation

Looking back at interesting questions I had to skip over when there were too many to choose, I found this interesting discussion of a functional equation.

Proving a Radical Expression Is Rational

It can be tricky deciding how to approach a proof; this problem, whose answer requires going in a very different direction than you might expect, provides some interesting insights into the nature of proof. The proof itself, in fact, is far less interesting than the process of getting there!

Finding a Locus: Algebra and Geometry

Last time we looked at the meaning of the concept of locus. This time, we’ll explore seven examples, from two students. We’ll look at both algebraic (equation) and geometric (description) perspectives.

Logs of Negative or Complex Numbers

Last time we considered negative bases for logarithms; in that discussion it was mentioned that complex numbers can change everything. This will allow us to do things like finding logs of negative numbers; but it will also make things, well, more complex! Let’s take a look.

Why Can’t a Logarithm Have a Negative Base?

We’ve looked at the basics of logsĀ and how they work; now we have some questions testing the limits of the definition. We’ll focus on the inverse idea of exponential functions with a negative base, looking at this from several perspectives.

Where Do Logarithms Come From?

Having answered many questions recently about logarithms, I realized we haven’t yet covered the basics of that topic. Here we’ll introduce the concept by way of its history, and subsequently we’ll explore how they work.