Properties as Axioms or Theorems

To close out this series that started with postulates and theorems in geometry, let’s look at different kinds of facts elsewhere in math. What is commonly called a postulate in geometry is typically an axiom in other fields (or in more modern geometry); but what about those things we call properties (in, say, algebra)?

Who Moved My Postulate?

Last time we looked at the question of why we have to have postulates, which are not proved, rather than being able to prove everything. Often, this question is mixed together with a different question: Why do different texts give different lists of postulates, so that what one calls a postulate, another calls a theorem? …

Who Moved My Postulate? Read More »

Derivative of Arcsin: From the Definition

(A new question of the week) In Monday’s post about fallacies in calculus, one of them used the definition of the derivative (or rather, misused it). Today we’ll look at a short question about applying that same definition, that came in last month.

Integration: More Than One Way, More Than One Answer

(An archive question of the week) In searching for answers to include in Monday’s post on calculus fallacies, I ran across a long discussion that illustrates some important aspects of methods of integration. In particular, there are often multiple ways to find an integral (the best not necessarily being the one taught in your textbook); …

Integration: More Than One Way, More Than One Answer Read More »

1=0? Calculus Says So [or Not]

“False Proofs”, where seemingly good logic leads to nonsensical conclusions, can be a good way to learn the boundaries of reality — what to look out for when you are doing real math. We have a FAQ on the subject; there we discuss several well-known fallacies based in algebra, and have links to others. Today, …

1=0? Calculus Says So [or Not] Read More »

Finding the Radius of a Sphere

(An archive question of the week) An interesting question came to us in 2016, where rather than using a well-known formula, it was necessary to work out both what data to use, and how to calculate the desired radius.

Finding the Area of a Circle

Students often wonder where the formula for the area of a circle comes from; and knowing something about that can help make it more memorable, as I discussed previously about other basic area formulas.