Arithmetic Series, Backward

Here is a recent question about arithmetic sequences and series (specifically, reversing the process to find the number of terms given the sum), that nicely illustrates a common type of interaction with a student: gathering information about both problem and student, then guiding them to use what they know, or giving new information as needed. …

Arithmetic Series, Backward Read More »

How Many Paths from A to B?

A popular kind of question in combinatorics is to count the number of paths between two points in a grid (following simple constraints). This can be done by very different methods at different levels. We’ll look at several problems of this type, starting with the simplest.

Sines Without Right Triangles

(A new question of the week) A recent question dealt with an apparent conflict between the right-triangle definition of sines and cosines, and the unit-circle definition, pertaining to multiples of 90° (angles on the axes). This provides an opportunity to look closely at the relationship between those two definitions. Two definitions Recall that the right-triangle …

Sines Without Right Triangles Read More »

Dividing Fractions: Can You Picture It?

We’ve looked at what it means to multiply fractions, including whole and mixed numbers; now it’s time for division of fractions. We’ll start here with pictures, similar to what we did for multiplication, but a little more complicated. Then next time, we’ll see additional ways to understand why we “invert and multiply”.

Simplifying Sums and Quotients of Radicals

(A new question of the week) A recent question asked about the reasons for differences in the work of simplifying different kinds of radical expressions. We’ll look at that general question, with two specific examples, and then consider an older problem of the same type.

Multiplying Fractions by Whole or Mixed Numbers

Last week we looked at how to multiply fractions, and why we do it that way. But what do we do when one of the numbers is a whole number, or when one or both are mixed numbers? And do we have to do it the way we are taught?

Fractions and Felonies

(A new question of the week) A recent question involved a word problem about fractions, which will fit in nicely with the current series on fractions. We’ll explore several ways to solve a rather tricky fraction word problem, some avoiding fractions as much as possible, some focusing on the meaning of the fractions, and others …

Fractions and Felonies Read More »