Dave Peterson

(Doctor Peterson) A former software engineer with degrees in math, I found my experience as a Math Doctor starting in 1998 so stimulating that in 2004 I took a new job teaching math at a community college in order to help the same sorts of people face to face. I have three adult children, and live near Rochester, N.Y. I am the author and instigator of anything on the site that is not attributed to someone else.

Proving the Law of Sines

Two of the most useful facts in trigonometry are the Law of Sines and the Law of Cosines (sometimes called the Sine Rule or Sine Formula, and the Cosine Rule or Cosine Formula). Over the years we were often asked where they come from (or are just asked about them, and reflexively offer proofs). There …

Proving the Law of Sines Read More »

Area of Pyramids and Cones

We’ve looked at the volume of a pyramid, the formula for which can be found geometrically by a couple very different methods. Cones can be handled the same way, so we can skim over them. Let’s finish up by considering the surface areas of both cones and pyramids.

Making a Sphere from Flat Material

(A new question of the week) A recent question asking how to make a sphere out of flat material called for a look at an old question on the same topic, and some new ideas, including thoughts about approximation. And we actually get to see the physical result of our assistance, which is rare!

Volume and Surface Area of a Sphere – Without Calculus

We often get questions about deriving formulas for area and volume; usually when the question is about a sphere, the context is calculus, so we talk about integration, the usual modern method. But for students who only know geometry, “wait until you learn calculus” can be unsatisfying. Fortunately, there are a couple ways to do …

Volume and Surface Area of a Sphere – Without Calculus Read More »

Supply, Demand, and Proportion

(A new question of the week) Since we looked at a question about economics last week, let’s examine another, which is very different, relating the supply and demand curves to the concept of variation or proportion. We are not economists, so we can’t go deeply into that subject, but it makes us think about some …

Supply, Demand, and Proportion Read More »

Derivative as Instantaneous Rate of Change

(An archive question of the week) Last week we looked at a recent question that touched on the idea of the derivative as a rate of change. Let’s look at a long discussion from a few years ago digging into what that means within calculus.