Figuring Out Integration by Parts
Having looked at some issues in integration, let’s look at some old questions about integration by parts.
Having looked at some issues in integration, let’s look at some old questions about integration by parts.
A couple recent questions offered tricks for integrating rational functions, opportunistically modifying or working around the usual method of partial fractions. We have previously discussed this method in Partial Fractions: How and Why, and in Integration: Partial Fractions and Substitution, where we looked at other variations.
A recent question reminded me I hadn’t yet written about the complexity surrounding the definition of ratio (and related terms, like rate and fraction). Here are four questions about the words.
Last time we looked at how to find the length of material on a roll, making some necessary simplifications. Here, I want to look at some variations on that: first, about carpet in particular, and then about wire on a spool.
One of the more frequent questions we had on Ask Dr. Math was about how to find the length of material (carpet, paper, wire, etc.) on a roll, knowing only the inner and outer diameters and something else: the thickness of the material, or the number of turns, or the original size of the roll. …
Last time we looked at the meaning of the concept of locus. This time, we’ll explore seven examples, from two students. We’ll look at both algebraic (equation) and geometric (description) perspectives.
A recent question asked about an interesting locus, which led me to realize we haven’t talked about that topic in general. Here we’ll look at what a locus is, using three simple examples, and then dig into a question about the wording.
(A new question of the week) Definite integrals can sometimes be solved by finding an antiderivative; but when that is either difficult or impossible, there may be special tricks available. Here we’ll lead a student gradually to a solution using symmetry; and then we’ll look at an earlier problem that used essentially the same trick …
(A new question of the week) Suppose we have a question that can be answered with Yes, No, or Maybe, and that whenever two people with different opinions meet, their discussion convinces each of them that neither can be right, so they both change to the other opinion. Given initial numbers of people with each …
Last time we considered negative bases for logarithms; in that discussion it was mentioned that complex numbers can change everything. This will allow us to do things like finding logs of negative numbers; but it will also make things, well, more complex! Let’s take a look.