Dave Peterson

(Doctor Peterson) A former software engineer with degrees in math, I found my experience as a Math Doctor starting in 1998 so stimulating that in 2004 I took a new job teaching math at a community college in order to help the same sorts of people face to face. I have three adult children, and live near Rochester, N.Y. I am the author and instigator of anything on the site that is not attributed to someone else.

Integrating Rational Functions: Beyond Partial Fractions

A couple recent questions offered tricks for integrating rational functions, opportunistically modifying or working around the usual method of partial fractions. We have previously discussed this method in Partial Fractions: How and Why, and in Integration: Partial Fractions and Substitution, where we looked at other variations.

What is a Ratio, Really?

A recent question reminded me I hadn’t yet written about the complexity surrounding the definition of ratio (and related terms, like rate and fraction). Here are four questions about the words.

Finding Length of a Roll: Facing Reality

Last time we looked at how to find the length of material on a roll, making some necessary simplifications. Here, I want to look at some variations on that: first, about carpet in particular, and then about wire on a spool.

Finding a Locus: Algebra and Geometry

Last time we looked at the meaning of the concept of locus. This time, we’ll explore seven examples, from two students. We’ll look at both algebraic (equation) and geometric (description) perspectives.

What is the Meaning of “Locus”?

A recent question asked about an interesting locus, which led me to realize we haven’t talked about that topic in general. Here we’ll look at what a locus is, using three simple examples, and then dig into a question about the wording.

Logs of Negative or Complex Numbers

Last time we considered negative bases for logarithms; in that discussion it was mentioned that complex numbers can change everything. This will allow us to do things like finding logs of negative numbers; but it will also make things, well, more complex! Let’s take a look.